
Hierarchical Grammars 



A grammar that can produce more than one parse tree for a given 
sentence is called ambiguous.  Ambiguity is a very bad property for a 
grammar because it can lead to the sentence being interpreted in 
different and unexpected ways.  

Ambiguity 



Example:  Consider the grammar 
 E ::= E+E | E*E | num 
Here are two parse trees for the sentence 2+3*4 

If we evaluate 2+3*4 from the parse trees, these two trees give 
different values: 14 on the left and 20 on the right.  That is why 
ambiguity is bad. 



Here is an unambiguous grammar that generates the same 
language as the previous ambiguous one: 

E ::= E+T | T 
T ::= T*F | F 
F ::= num 

This time our sentence 2+3*4 has only one parse tree: 

If there is a + in the sentence the rule E ::= E+T needs to be applied 
at the start, for if we begin E ::= T there is no + in the rules for T and 
below.  The hierarchy of the rules eliminates the ambiguity. 



Precedence 

Consider the grammar 
E ::= E+T | T 
T ::= T*F | F 
F ::=  num 



Here are parse trees for 2+3*4 and 2*3 + 4 

Note that in both cases the grammar correctly gives 
multiplication precedence over addition. 



Now consider the grammar 
E ::= E*T | T 
T ::= T+F | F 
F ::= num 

The sentence 2+3*4 parses to 

This gives addition 
precedence over 
multiplication! 



Moral: In expression grammars we can determine 
operator precedence by using hierarchical grammars, with 
lower-precedence operators appearing higher in the 
grammar and higher-precedence operators farther down 
in the list of rules. 



Associativity 

In high school math classes you learned that the addition 
operator is associative: a+(b+c) = (a+b)+c. 
 
This is not true of subtraction: 
 10-(7-3) = 6  (10-7)-3 = 0 
 
We usually think of subtraction (and division as well) as being 
left associative in that the expression a-b-c is assumed to mean 
(a-b)-c    and a-b-c-d-e  is (((a-b)-c)-d)-e.  This has not always 
been the case -- all operators in APL were right associative -- 
but left associativity is usually been preferred. 



Let's extend our grammar to include subtraction and division: 
E ::= E+T | E-T | T 
T ::= T*F | T/F | F 
F ::= num 
 

The expression  10-7-3 parses to 

Note that this associates 
from the left. 



If we changed the grammar to 
E ::= T+E | T-E | T 
T ::= F*T | F/T | F 
F ::= num 

then 10-7-3 would parse to 

This associates from the 
right. 



A grammar rule 
 A ::= a 

is said to be left recursive if the symbol on the left side, A, is the 
leftmost symbol of the right side. 
 
For example,  our rule  E ::= E+T is left recursive. 
 
Similarly  A ::= a is right recursive if A is the rightmost symbol on 
the right side.   E ::= T+E is right recursive.   
 
The last two examples show that left recursive rules make left 
associative operators, and right recursive rules make right 
associative operators.   



Moral:  For expression grammars we want 
hierarchical grammar rules to avoid ambiguity, 
operator precedence determined by the depth 
of the rule for  the operator in the grammar, 
and associativity determined by the left 
recursive or right recursive nature of the rules. 



Here is a full grammar for arithmetic expressions: 
 
E ::= E+T | E-T | T 
T ::= T*F | T/F | F 
F ::= G**F | G 
G ::= -H | H 
H ::= (E) | id | num 
 
 


