
Hierarchical Grammars

A grammar that can produce more than one parse tree for a given
sentence is called ambiguous. Ambiguity is a very bad property for a
grammar because it can lead to the sentence being interpreted in
different and unexpected ways.

Ambiguity

Example: Consider the grammar
 E ::= E+E | E*E | num
Here are two parse trees for the sentence 2+3*4

If we evaluate 2+3*4 from the parse trees, these two trees give
different values: 14 on the left and 20 on the right. That is why
ambiguity is bad.

Here is an unambiguous grammar that generates the same
language as the previous ambiguous one:

E ::= E+T | T
T ::= T*F | F
F ::= num

This time our sentence 2+3*4 has only one parse tree:

If there is a + in the sentence the rule E ::= E+T needs to be applied
at the start, for if we begin E ::= T there is no + in the rules for T and
below. The hierarchy of the rules eliminates the ambiguity.

Precedence

Consider the grammar
E ::= E+T | T
T ::= T*F | F
F ::= num

Here are parse trees for 2+3*4 and 2*3 + 4

Note that in both cases the grammar correctly gives
multiplication precedence over addition.

Now consider the grammar
E ::= E*T | T
T ::= T+F | F
F ::= num

The sentence 2+3*4 parses to

This gives addition
precedence over
multiplication!

Moral: In expression grammars we can determine
operator precedence by using hierarchical grammars, with
lower-precedence operators appearing higher in the
grammar and higher-precedence operators farther down
in the list of rules.

Associativity

In high school math classes you learned that the addition
operator is associative: a+(b+c) = (a+b)+c.

This is not true of subtraction:
 10-(7-3) = 6 (10-7)-3 = 0

We usually think of subtraction (and division as well) as being
left associative in that the expression a-b-c is assumed to mean
(a-b)-c and a-b-c-d-e is (((a-b)-c)-d)-e. This has not always
been the case -- all operators in APL were right associative --
but left associativity is usually been preferred.

Let's extend our grammar to include subtraction and division:
E ::= E+T | E-T | T
T ::= T*F | T/F | F
F ::= num

The expression 10-7-3 parses to

Note that this associates
from the left.

If we changed the grammar to
E ::= T+E | T-E | T
T ::= F*T | F/T | F
F ::= num

then 10-7-3 would parse to

This associates from the
right.

A grammar rule
 A ::= a

is said to be left recursive if the symbol on the left side, A, is the
leftmost symbol of the right side.

For example, our rule E ::= E+T is left recursive.

Similarly A ::= a is right recursive if A is the rightmost symbol on
the right side. E ::= T+E is right recursive.

The last two examples show that left recursive rules make left
associative operators, and right recursive rules make right
associative operators.

Moral: For expression grammars we want
hierarchical grammar rules to avoid ambiguity,
operator precedence determined by the depth
of the rule for the operator in the grammar,
and associativity determined by the left
recursive or right recursive nature of the rules.

Here is a full grammar for arithmetic expressions:

E ::= E+T | E-T | T
T ::= T*F | T/F | F
F ::= G**F | G
G ::= -H | H
H ::= (E) | id | num

